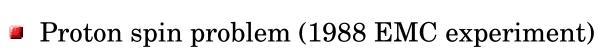
Event Structure and Double Helicity Asymmetry in Jet Production from Polarized p+p Collisions at $\sqrt{s} = 200$ GeV at PHENIX

SPIN 2010

Spin in Hadronic Reactions 1 14:00-14:30, Sept. 27, 2010

Kenichi Nakano
(Tokyo Tech)
for the PHENIX Collaboration

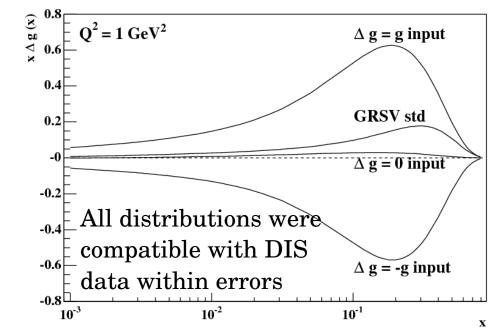

Contents

- 1. Introduction
- 2. Experimental setup
- 3. Measurement methods
- 4. Results
- 5. Conclusion

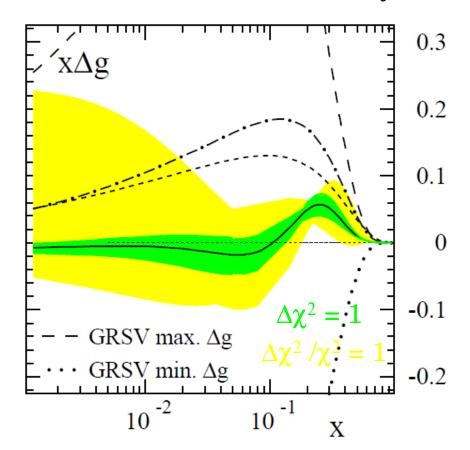
Spin structure of proton

$$\frac{1}{2} = \frac{1}{2} \sum_{q} \Delta q + \Delta G + L_q + L_g$$

proton spin quark spin gluon spin orbital angular momenta

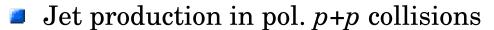

• Need determine the gluon polarization ΔG first by experiment

Polarized (spin-dependent) gluon distribution function:
$$\Delta G(x)$$

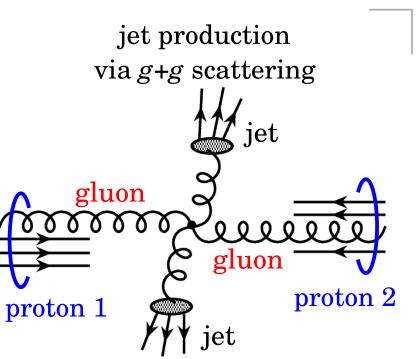

$$\Delta G = \int_0^1 dx \Delta G(x) = \int_0^1 dx (G^+(x) - G^-(x))$$

- +: gluon spin
 -:
- Bjorken x: momentum fraction carried by a parton (= p_{parton}/P_{proton})
- $G^+(x)$: the probability of finding gluons at x and "+" spin direction
- $ightharpoonup \Delta G$ = the contribution of gluon spin to the proton spin

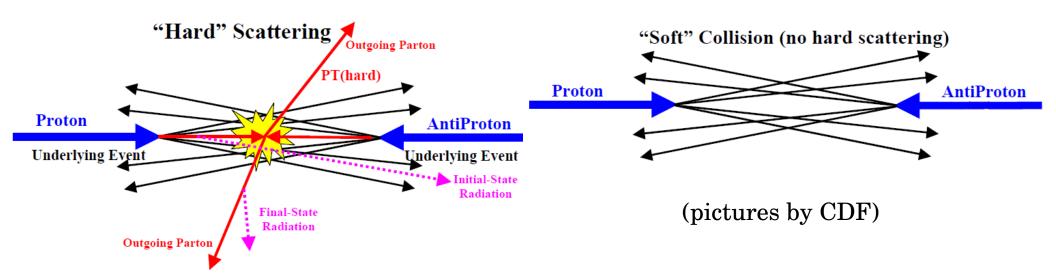
- Knowledge on $\Delta G(x)$
 - GRSV ... PRD 63, 094005 (2001)
 - Many DIS data together were analyzed
 - Best-fit result and three typical distributions



- DSSV ... PRL 101, 072001 (2008)
 - DIS, SIDIS & p+p data
 - Best-fit result w/ uncertainty bands

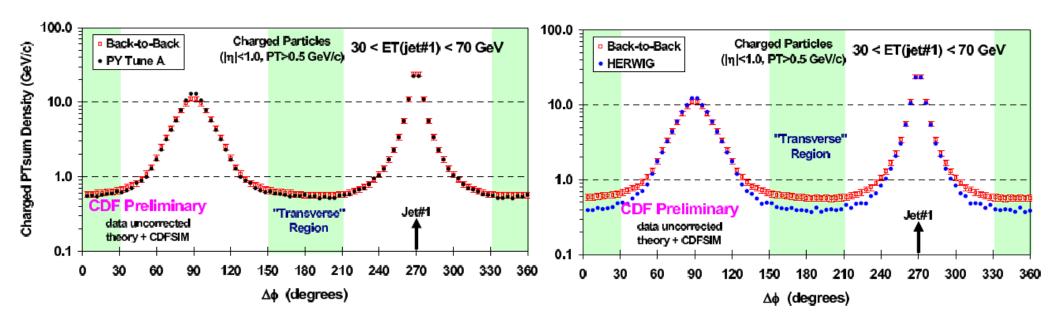

- Many data in ~8 years have improved the accuracy
- But still larger uncertainty, unclear *x* dependence

- Polarized p+p collisions for ΔG measurement
 - Jet, π⁰, direct photon productions etc.
 via parton+parton scattering
 - Gluon can be involved at leading order (compared with lepton-nucleon DIS)
 - lacksquare Suited for ΔG measurement

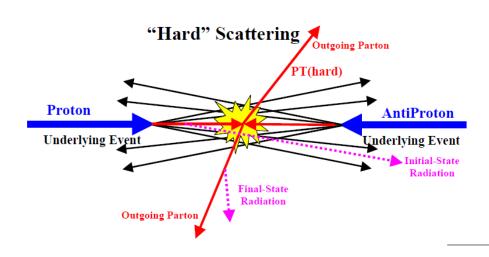


- Jet = a group of particles fragmented from a scattered parton
- Dominating process in hard scatterings-> large statistics & few background events
- g+g & g+q dominate (not q+q)
- Better reconstruct the original parton kinematics and acquire better stat. accuracy at higher x (compared with inclusive hadron measurements)

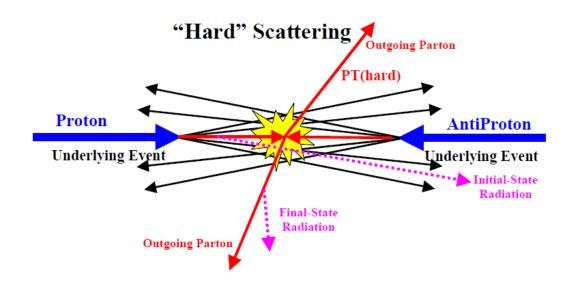
This is the first measurment of inclusive jet production at PHENIX to determine ΔG (arXiv:1009.4921)



- Event structure of hadron-hadron collisions
 - Jet event = two jets + underlying event ≠ two jets + soft collision

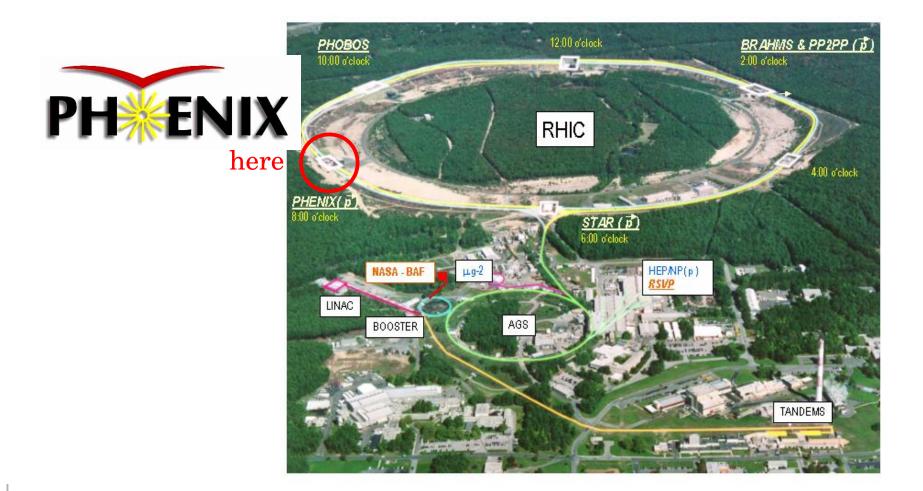


Underlying event = particles not originating from hard scattering

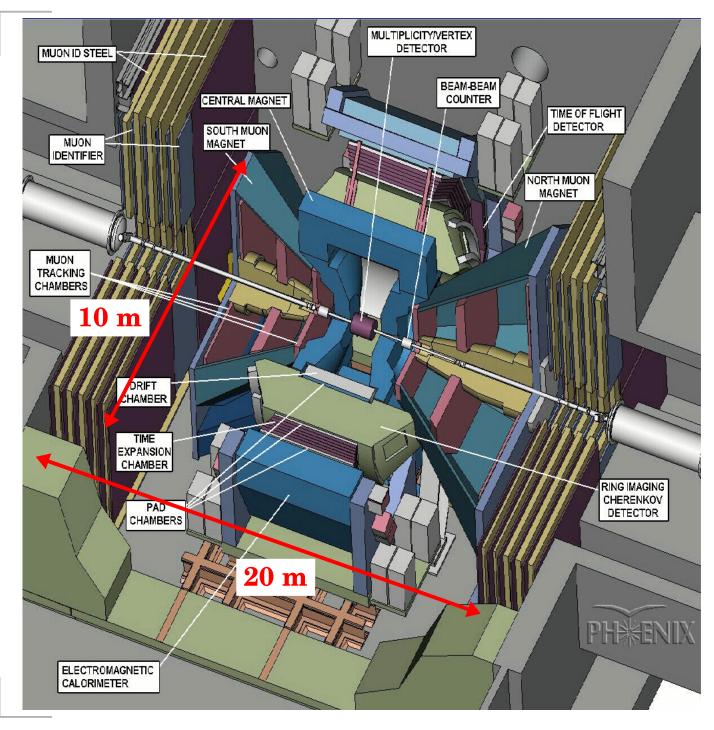

- Event structure in \overline{p} +p coll. at $\sqrt{s} \sim 2$ TeV measured by CDF
 - Charged particle p_T density as an example ("transverse" region is sensitive to underlying event)

- Two simulations (PYTHIA & HERWIG) well reproduce back-toback jet shape
- PYTHIA is better at "transverse" region

- Multi-Parton Interaction (MPI) scheme in PYTHIA
 - Semi-hard parton+parton scatterings (as well as soft beam remnants)
 - Agreed well with CDF Run-2 data
 - Indicates an advanced scattering picture
 Jet event = two hard-scatterd partons + semi-hard-scat. partons + soft

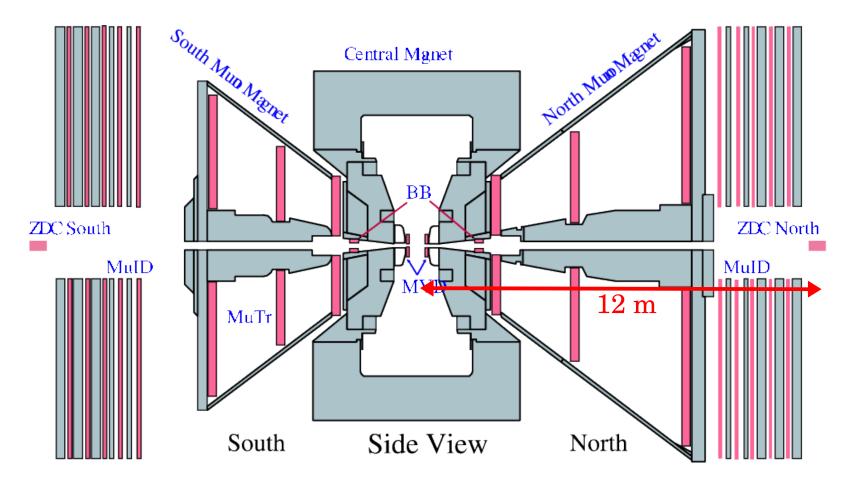


- Measurement of event structure (underlying event) in p+p collisions at $\sqrt{s} = 200$ GeV is intersting...
 - \blacksquare To evaluate correction for measured jet momentum (in $\triangle G$ measurement)
 - To examine MPI model



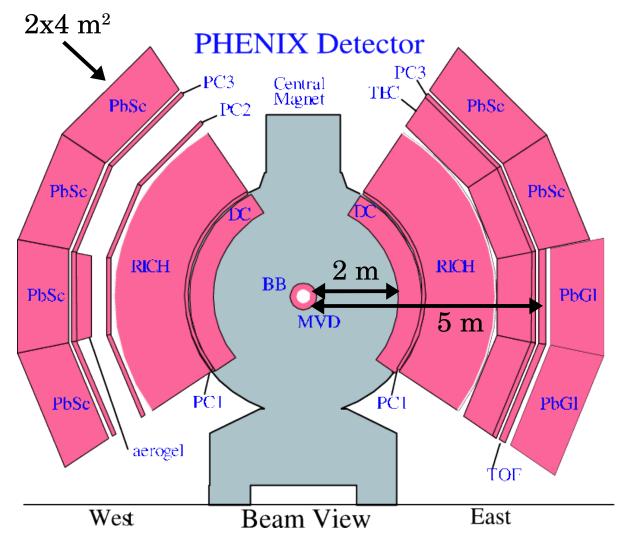
Relativistic Heavy Ion Collider (RHIC) @ BNL

- The unique collider for polarized proton-proton collision
- \sqrt{s} = 200 GeV with 100 GeV proton + 100 GeV proton (\sqrt{s} = 62.4 & 500 GeV are also possible)
- Longitudinal polarization (transverse pol. is also possible)


PHENIX Detector - Overview

- Forward detectors
 - Near beam pipe
- Central (East & West) Arms
 - pseudorapidity:|η| < 0.35
 - azimuthal: $\Delta \phi = 90^{\circ} \times 2$
- Muon (North & South) Arms
 - $1.1 < |\eta| < 2.3,$
 - $\Delta \phi = 2\pi$
 - muon

PHENIX Detector - Forward Detectors (near Beam Pipe)


Cross section in sideview

- Collision point, beam luminosity & minimum-bias trigger
 - With Beam-Beam Counter ... charged particles at 3.0<|η|<3.9</p>
- Beam polarization direction at PHENIX IR
 - With Zero-Degree Calorimeter ... neutrons at ±2.8 mrad

PHENIX Detector - Central Arms

- Cross section in beamview
 - $\Delta \phi = 90^{\circ} \times 2, |\eta| < 0.35$

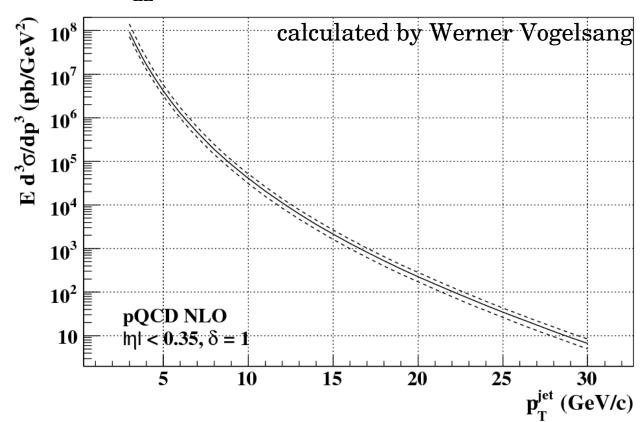
- Photons
 - With EMCal ...
 Lead Scintillator (PbSc) &
 Lead Glass (PbGl)
 - $\sigma_E/E \sim 8\%$ at 1 GeV
 - Fine segmentation, 0.01x0.01 rad/seg.
- Charged particles
 - With Drift Chamber (DC)& Pad Chamber (PC1)
 - $\sigma_p/p \sim 1.6\%$ at 1 GeV
- Trigger
 - High-energy photon(>~1.4 GeV) by EMCal

Jet Reconstruction

- Analyzed data
 - Integrated luminosity: 2.3 pb⁻¹ taken in 2005
 - High- p_T (> 2 GeV/c) photon trigger ... largest statistics
 - Photons with $p_T > 0.4 \text{ GeV/}c$ (measured with EMCal)
 - \blacksquare Charged particles with 0.4 < $p_{\scriptscriptstyle T}$ < 4.0 GeV/c (measured with DC and PC1)
- Particles in one Central Arm were clustered
 - By a seed-cone algorithm with a cone radius R = 0.3

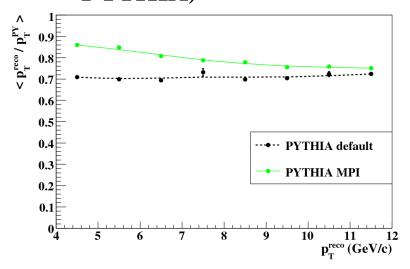
... this cone is as large as the Central Arm acceptance ($|\eta| < 0.35$)

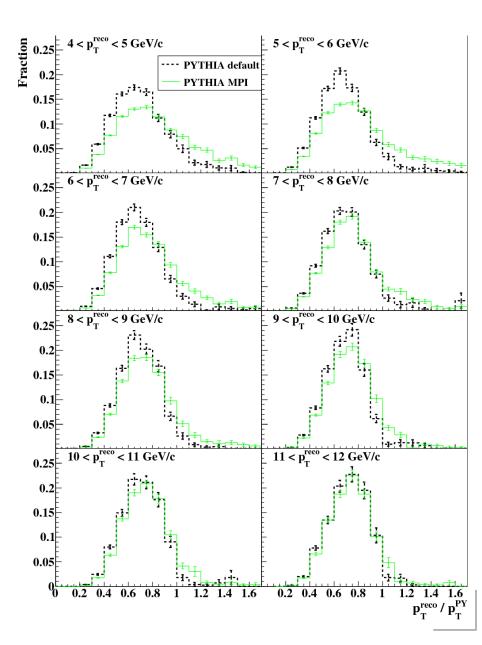
$$R^{i} \equiv \sqrt{(\eta^{i} - \eta^{C})^{2} + (\phi^{i} - \phi^{C})^{2}}$$


• Choose the particle cluster having maximum p_T^{reco} in arm

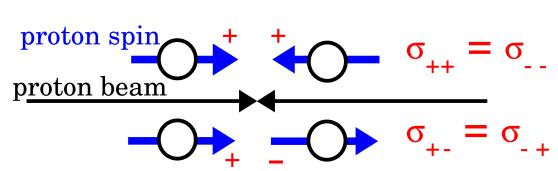
$$\text{reconstructed-jet } p_{\mathit{T}}\!\!: \; \vec{p}^{\; \text{reco}} \equiv \sum_{i \in \text{cone}} \vec{p}_{i}$$

- \blacksquare *n* particle clusters from *n* seed particles, but largely overlapped
- Splitting doesn't work well because of the limited acceptance


Prediction with NLO Calculation + Simulation


- NLO pQCD calculation
 - Parton-level jet with cone size $\delta = 1.0$
 - lacksquare Larger δ to suppress jet splits, since the measurement is not sensitive to jet splits
 - \blacksquare Correction with full simulation parton-level jet with $\delta=1.0~$ —> hadron-level jet with R=0.3
 - Cross section (& A_{LL} also) can be given

Prediction with NLO Calculation + Simulation


- **PYTHIA+GEANT** simulation
 - This is to evaluate the statistical translation from parton-level jets to hadron-level (reconstructed) jets
 - Parton-level jet in PYTHIA
 - = one of hard-scattered partons
 - p_T in NLO calc. = p_T in PYTHIA
 - With $10\% p_T$ scale error (which has been evaluated from the cone-size dependence of jet p_T in PYTHIA)

Measurement of Δ G with Jet Production

- Polarized proton-proton collisions
 - Two helicity (polarization) patterns: "+ + or --" and "+ or -+"

Double helicity asymmetry

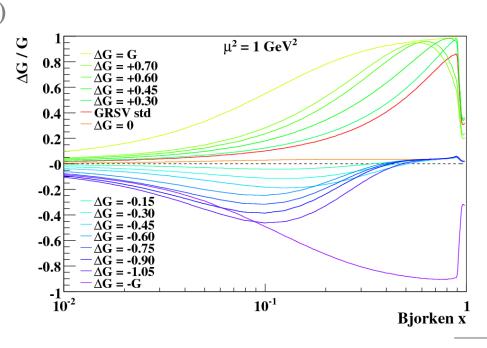
$$A_{LL} = \frac{1}{|P_B||P_Y|} \frac{(N_{++} + N_{--}) - R(N_{+-} + N_{-+})}{(N_{++} + N_{--}) + R(N_{+-} + N_{-+})}$$

 N_{++} , N_{+-} : jet yield with "++" or "+-" helicity pattern

 $P_{\rm R}$, $P_{\rm V}$: beam polarization (~ 49%)

 $R = L_{++}/L_{+-}$: relative luminosity (0.9 ~ 1.1)

- ullet Evaluate jet yields w/ each helicity pattern to obtain $A_{\scriptscriptstyle LL}$
- Systematic errors cancel out in most cases
 (luminosity, trigger efficiency, detector acceptance, etc.)

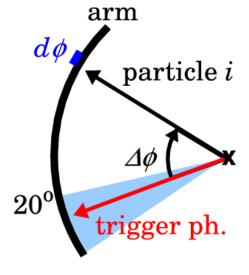

Measurement of Δ G with Jet Production

Predictions of A_{LL} w/ NLO pQCD calculation + simulation

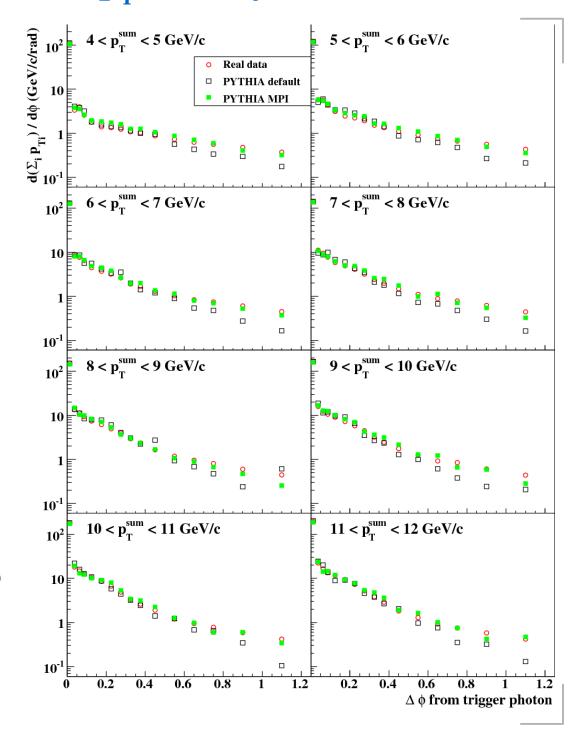
$$A_{LL} \equiv \frac{\sigma_{++} - \sigma_{+-}}{\sigma_{++} + \sigma_{+-}} \xrightarrow{q+g} \frac{\int dx_1 dx_2 \ \Delta q(x_1) \cdot \Delta G(x_2) \cdot \Delta \hat{\sigma}^{q+g \to jet + X}}{\int dx_1 dx_2 \ q(x_1) \cdot G(x_2) \cdot \hat{\sigma}^{q+g \to jet + X}}$$

 $\Delta \hat{\sigma} = (\hat{\sigma}_{++} - \hat{\sigma}_{+-})/2$: spin-dependent cross section of parton-parton scattering (calculable by pQCD)

- ullet Apply simulation correction to derive reco.-jet A_{LL}
- Different x, Q^2 , subprocess (q+g etc.) are convoluted in measured A_{LL} -> difficult to unfold measured A_{LL} to directly get ΔG
- ullet Evaluate A_{LL} with various assumed ΔG & compare them with measured A_{LL} to find the most probable ΔG

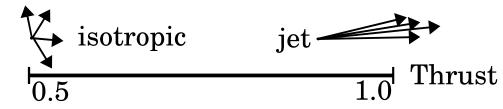

Measured Quantities

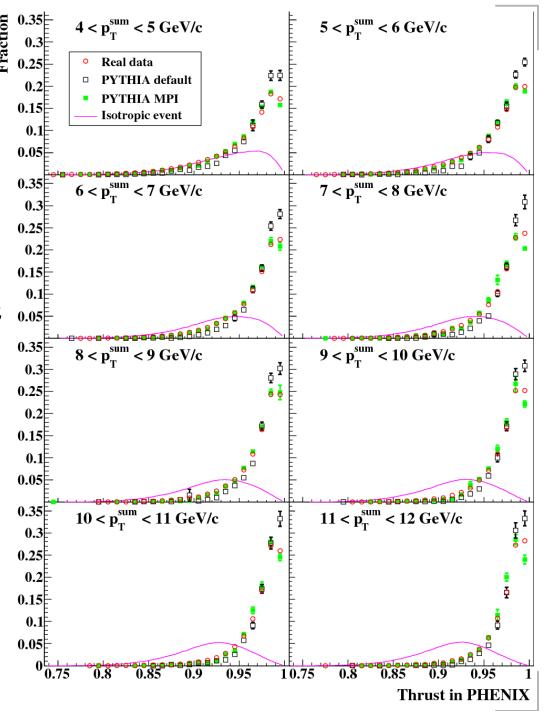
- \blacksquare Event structure ... multiplicity, $p_{\scriptscriptstyle T}$ density & thrust
 - Check how PYTHIA MPI can reproduce the event structure in p+p collisions at $\sqrt{s} = 200 \text{ GeV}$
 - Confirm that simulation reproduces real data well
- Jet production rate
 - Confirm that the absolute yield of the measurement & the calculation are consistent (cf. A_{LL} is relative)
- $leftar{} \operatorname{Jet} A_{_{LL}}$
 - ullet Jet yields in two beam pol. pattern -> measured A_{LL}
 - ullet pQCD theory and PYTHIA+GEANT simulation –> predicted $A_{\scriptscriptstyle LL}$
 - ${\color{red} \bullet}$ Compare the measured A_{LL} with the predicted A_{LL} to find the most probable ΔG


Event Strucure - p_T Density

Sum of p_T of particles at $\Delta \phi$ from trigger photon

$$\mathcal{D}_{p_T}(\Delta\phi) \equiv \left\langle rac{1}{\delta\phi} \sum_{i ext{in}[\Delta\phi, \ \Delta\phi + \delta\phi]} p_{Ti}
ight
angle_{ ext{event}}$$


- Jet shape (at small $\Delta \phi$)
 - PYTHIA MPI (& def.) OK
- Underlying event (at large $\Delta \phi$)
 - PYTHIA MPI OK

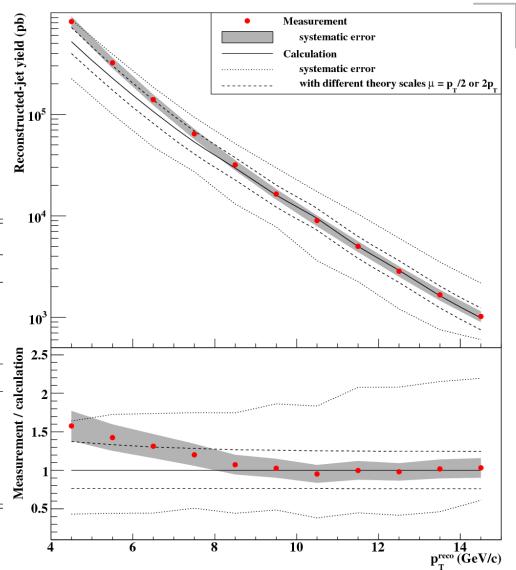

Event Structure - Thrust

How much particles are concentrated in one direction

$$T_{PH} = rac{\sum_{i} |\vec{p_i} \cdot \hat{\vec{p}}|}{\sum_{i} |\vec{p_i}|}$$

PYTHIA MPI agrees with real data

Jet Production Rate

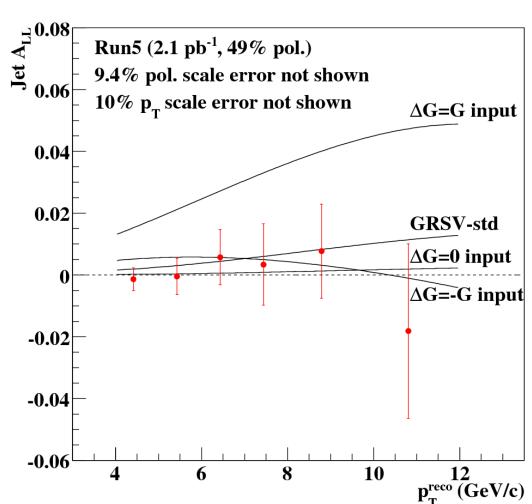

Reconstructed-jet yields corrected for trigger efficiency

$$\mathcal{Y}^i \equiv rac{N^i_{reco}}{L \cdot f_{ ext{MB}} \cdot f_{ph}}$$

Main systematic errors

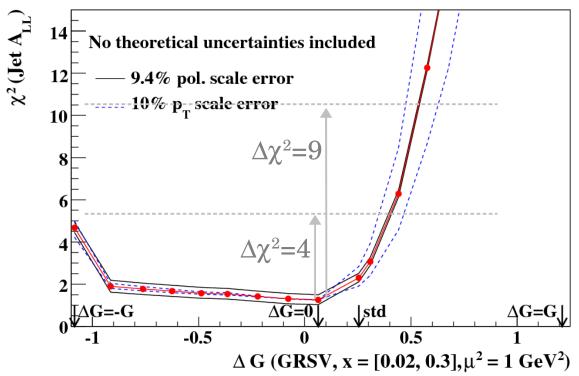
Source	Size	Size on rate
Measurement		
Luminosity	9.7%	9.7%
EMCal energy scale	1.5%	7-6%
Tracking momentum scale	1.5%	0 - 3%
Calculation		
Jet definition	10% in p_T	30 70%
Jet shape & underlying event	_	50-20%
High- p_T photon fragmentation	_	10%
Simulation statistics	_	2-5%

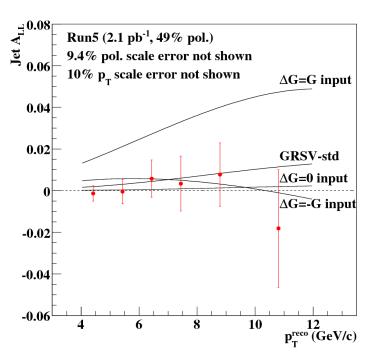
PYTHIA MPI agrees with real data within errors



Double Helicity Asymmetry

 $lue{}$ Reconstructed-jet $A_{\scriptscriptstyle LL}$


$$A_{LL} \equiv \frac{\sigma_{++} - \sigma_{+-}}{\sigma_{++} + \sigma_{+-}}$$


- Stat. error dominates
- Systematic errors
 - Jet definition ... 10% in $p_{_{\rm T}}$
 - Beam pol. error ... 9.4%
 - Other errors (luminosity, measured energy & mom. scales, etc.) are negligible in A_{LL}

Constraint on ΔG

ullet Comparison of measured & predicted $A_{\scriptscriptstyle LL}$

- $\,$ 0.02 < $x_{\rm gluon}$ < 0.3 ... probed by reco. jets with 4 < $p_{\scriptscriptstyle T}^{\rm \; reco}$ < 12 GeV/c
- In GRSV parametrization, at $0.02 < x_{\rm gluon} < 0.3$ and $Q^2 = 1~{\rm GeV^2}$

$$-1.1 < \int_{0.02}^{0.3} \Delta G^{GRSV}(x,\mu^2=1) < 0.4 \qquad \text{as 95\% confidence interval}$$

$$\int_{0.02}^{0.3} \Delta G^{GRSV}(x,\mu^2=1) < 0.5 \qquad \text{as 99\% confidence interval}$$

Conclusion

- The event structure & the double helicity asymmetry (A_{LL}) of jet production at mid-rapidity ($|\eta| < 0.35$) in longitudinally polarized p+p collisions at $\sqrt{s} = 200$ GeV was measured
 - This is the first measurment of inclusive jet production at PHENIX to determine ΔG (arXiv:1009.4921)
- In the MPI-enhanced PYTHIA simulation agrees well with the real data in terms of the event structure (multiplicity, p_T density, thrust)
- In A_{LL} measurement
 - Photons and charged particles were clustered by the seed-cone algorithm with a cone radius R = 0.3
 - The PYTHIA+GEANT simulation was used in relating the NLO calculation to the real data
 - \blacksquare A_{LL} was measured at $4 < p_{\rm T}^{\rm reco} < 12~{\rm GeV}/c$ -> 0.02 < x < 0.3
 - lacksquare The comparison with the calculated A_{LL} imposed the limit

$$-1.1 < \int_{0.02}^{0.3} \Delta G^{GRSV}(x,\mu^2=1) < 0.4$$
 as 95% confidence interval
$$\int_{0.02}^{0.3} \Delta G^{GRSV}(x,\mu^2=1) < 0.5$$
 as 99% confidence interval